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Abstract

In word sense disambiguation, a system attempts to
determine the sense of a word from contextual fea-
tures. Major barriers to building a high-performing
word sense disambiguation system include the dif-
ficulty of labeling data for this task and of pre-
dicting fine-grained sense distinctions. These is-
sues stem partly from the fact that the task is be-
ing treated in isolation from possible uses of au-
tomatically disambiguated data. In this paper, we
consider the related task of word translation, where
we wish to determine the correct translation of a
word from context. We can use parallel language
corpora as a large supply of partially labeled data
for this task. We present algorithms for solving the
word translation problem and demonstrate a signif-
icantimprovement over a baseline system. We then
show that the word-translation system can be used
to improve performance on a simplified machine-
translation task and can effectively and accurately
prune the set of candidate translations for a word.

I ntroduction

closely related senses pose a challenge both for auto-
matic disambiguation and hand labeling. Moreover,
the use of a very fine-grained set of senses, most of
which are quite rare in practice, makes it very diffi-
cult to obtain sufficient amounts of training data.

These issues are clearly reflected in the perfor-
mance of current word-sense disambiguation sys-
tems. When given a large amount of training data
for a particular word with reasonably clear sense
distinctions, existing systems perform fairly well.
However, for the “all-words” task, where all am-
biguous words from a test corpus must be disam-
biguated, it has so far proved difficult to perform sig-
nificantly better than the baseline heuristic of choos-
ing the most common sense for each wbrd.

In this paper, we address a different formulation
of the word-sense disambiguation task. Rather than
considering this task on its own, we consider a task
of disambiguating words for the purpose of some

The problem of distinguishing between multiplelarger goal. Perhaps the most direct and compelling
possible senses of a word is an important subtask épplication of a word-sense disambiguator is to ma-
many NLP applications. However, despite its conehine translation. If we knew the correct seman-
ceptual simplicity, and its obvious formulation as aic meaning of each word in the source language,
standard classification problem, achieving high lewwe could more accurately determine the appropriate
els of performance on this task has been a remarigords in the target language. Importantly, for this
ably elusive goal. application, subtle shades of meaning will often be
In its standard formulation, the disambiguationirrelevant in choosing the most appropriate words in
task is specified via an ontology defining the difthe target language, as closely related senses of a
ferent senses of ambiguous words. In the Sensgingle word in one language are often encoded by a
val competition, for example, WordNet (Fellbaum,single word in another. In the context of this larger
1998) is used to define this ontology. However, ongoal, we can focus only on sense distinctions that a
tologies such as WordNet are not ideally suited tbuman would consider when choosing the transla-
the task of word-sense disambiguation. In mantion of a word in the source language.
cases, WordNet is overly “specific”, defining senses We therefore consider the task of word-sense dis-
which are very similar and hard to distinguish. Folambiguation for the purpose of machine translation.
example, there are seven definitions of “respectRather than predicting the sense of a particular word
as a noun (including closely related senses such ag, we predict the possible translations ofnto the
“an attitude of admiration or esteem” and “a feel-
ing of friendship and esteem”); there are even more igqe

. / results of Senseval-3,
when the verb definitions are included as well. Suchttp://www.senseval.org/senseval3

available at



target language. We both train and evaluate the sysords in the source language. Thus, the words gen-
tem on this task. This formulation of the word-senserated byt; are independent of the words generated
disambiguation task, which we refer to agrd by t; for eachj # 4. This means that correla-
trandation, has multiple advantages. First, a vergions between words in the source sentence are not
large amount of “partially-labeled” data is availablecaptured byP(s|t), and so the context we will use
for this task in the form of bilingual corpora (which in our word translation models to preditt given
exist for a wide range of languages). Second, thg is not available to a system making these inde-
“labeling” of these corpora (that is, translation frompendence assumptions. In this type of system, se-
one language to another), is a task at which humamsantic and syntactic relationships between words
are quite proficient and which does not generally reare only modeled in the target language; most or
quire the labeler (translator) to make difficult dis-all of the semantic and syntactic information con-
tinctions between fine shades of meaning. tained in the source sentence is ignored. The lan-
In the remainder of this paper, we first discusguage modelP(t) does introduce some context-
how training data for this task can be acquired awdependencies, but the standard n-gram model used
tomatically from bilingual corpora. We apply ain machine translation is too weak to provide a rea-
standard learning algorithm for word-sense disanonable solution to the strong independence assump-
biguation to the word translation task, with severalions made by the alignment model.
modifications which proved useful for this task.We, .
present the results of our algorithm on word transla“?’ Task Formulation
tion, showing that it significantly improves perfor- We define the word translation task as finding, for
mance on this task. We also consider two metran individual worda in the source languagg, the
ods for incorporating word translation into machinecorrect translation, either a word or phrase, in the
translation. First, we can use the output of our modéfrget languagel. Clearly, there are cases where
to help a translation model choose better words is part of a multi-word phrase that needs to be
since general translation is a very noisy process, wanslated as a unit. Our approach could be extended
present results on a simplified translation task. Se§Y preprocessing the data éto find phrases, and
ond, we show that the output of our model can b&en executing the entire algorithm treating phrases
used to prune candidate word sets for translatio@s atomic units. We do not explore this extension in
this could be used to significantly speed up currerihis paper, instead focusing on the word-to-phrase

translation systems. translation problem.
) ) As we discussed, a key advantage of the word
2 Machine Translation translation vs. word sense disambiguation is the

In machine translation, we wish to translate a seravailability of large amounts of training data. This
tences in our source language intoin our target data is in the form of bilingual corpora, such as
language. The standard approach to statistical mghe European Parliament proceedigsSuch doc-

chine translation uses tiseurce-channel model , uments provide many training instances, where a
word in one language is translated into another.
argmax P(t[s) = argmax P(t) P(s|t), However, the data is only partially labeled in that

. we are not given a word-to-word alignment between
whereP(t) is thelanguage model for the target lan- 14 two languages, and thus we do not know what

guage, and”(s|t) is analignment model from the oyery word in the source languageranslates to in
target language to the source language. Togethgy,

. . e target languagé&. While sentence-to-sentence
the_y deflne_a generative model for th_e source/targg]ignmem is a fairly easy task, word-to-word align-
pair (s, t): firstt is generated according to the lan-

. : ment is considerably more difficult. To obtain word-
guage model’(t); thens is generated fromt ac- ¢, \yord alignments, we used GIZA%#an imple-

cording toP(s|t).2 mentation of the IBM Models (specifically, we used
Typically, strong independence assumptions afge output of IBM Model 4). We did not perform

then made about the distributioR(s|t). For ex- stemming on either language, so as to preserve suf-

ample, in the IBM Models (Brown et al., 1993), fix information for our word translation system and

each wordt; independently generates 0, 1, or morghe machine translation language model.
Note that we refer tbas the target sentence, even though in Let Ds be the set of sentences in the source lan-

the source-channel modeljs the source sentence which goes——5————— o

through the channel modél(s|t) to produce the observed sen-  “Available athttp://www.isi.edu/ koehn/

tences. “Available athttp://www.isi.edu/ och/GIZA++.html



fnrgn”tce';gf)q“ency) ;g?rr]‘;'ﬁgon metric only rewards the algorithm for selecting the
leve(10), lever(17) standing up target word/ph_rase that happened_to be used in the
hausse(58), augﬂ?ntgé%;),'ncrease(number) actual translation. Thus, accuracies measured us-

augmentation H . . e - ..
interviens(53) to rise to speak ing this metric may be artificially low. This is a
naissance(21), source(10)| to be created, aris¢ common problem with evaluating machine transla-
soulevé(10) raising an issue tion systems.

Another issue is that we take as ground truth the
alignments produced by GIZA++. This has two im-
plications: first, our training data may be noisy since
guage andD7 the set of target language sentencessome alignments may be incorrect; and second, our

The alignment algorithm can be run in either ditest data may not be completely accurate. As men-
rection. When run in th& — 7 direction, the al- tioned above, we only consider possible translations
gorithm aligns each word ih to at most one word Which occur some minimum number of times; this
in s. Consider some source sentesdfat contains removes many of the mistakes made by GIZA++.
the worda, and letU, s .4 = b1, ..., by be the set Even if the test set is not 100% reliable, though, im-
of words that align ta in the aligned sentende In ~ Provement over baseline performance is indicative
general, we can considéf, = {U,s .t }sep, to be Of the potential of a method.
the candidate set of translations f@1in 7, where
D, is the set of source language sentences contaih- Word Translation Algorithms

ing a. However, this definition is quite noisy: awordthe word translation task and the word-sense dis-
b; might have been aligned witharbitrarily; or,b;  ampiguation task have the same form: each word
might be a word that itself corresponds to a multiig 5ssociated with a set of possible labEls given
word translation inS. Thus, we also align the sen-, sentence containing words, we must determine
tences in thg” — & direction, and require that eachyhich of the possible labels i, to assign taz in
b; in the phrase aligns either withor with nothing. - he contexs. The only difference in the two tasks is
As this process is still fairly noisy, we only consider,q setl/,: for word translation it is the set of pos-
aword or phrase € U, to be a candidate translation ip|e transiations ofi, while for word sense disam-
for ¢ if it occurs some minimum number of times in biguation it is the set of possible senses: i some
the data. ontology. Thus, we may use any word sense disam-
For example, Table 1 shows a possible candidatsiguation algorithm as a word translation algorithm
set for the English word “rise”, with French as thepy appropriately defining the senses (assuming that
target language. Note that this set can contain ngie WSD algorithm does not assume that a particular
only target words corresponding to different meangntology is used to choose the senses).
ings of “rise” (the rows in the table) but also words 5+ main focus in this paper is to show that ma-
which correspond to different grammatical forms inchine |earning techniques are effective for the word
the target language corresponding to different par{gyngjation task, and to demonstrate that we can use
of speech, verb tenses, etc. So, disambiguation {Re output of our word translation system to im-
this case is both over senses and grammatical fom}ﬁ'ove performance on two machine-translation re-
The final result of our processing of the corpus isiated tasks. We will therefore restrict our atten-
for each source word, a set of target words/phrasestion to a relatively simple model, logistic regres-
Ua; and a set of sentencds, where, in each sen- sjon (Minka, 2000). There are several motivations
tence,a is aligned to somé € U,. For any sen- for using this discriminative, probabilistic model.
tences € D,, aligned to some target sentente First, it is known both theoretically and empirically
let u,s € U, be the word or phrase it aligned (e.g., (Ng and Jordan, 2002)) that discriminative
with a. We can now treat this set of sentences agodels achieve higher accuracies than generative
a fully-labeled corpus, which can be split into a sefnodels if enough data is available. For the tradi-
used for learning the word-translation model and @onal word-sense disambiguation task, data must be
test set used for evaluating its performance. hand-labeled, and is therefore often too scarce to al-
We note, however, that there is a limitation to ustow for discriminative training. In our setting, how-
ing accuracy on the test set for evaluating the perfoever, training data is acquired automatically from
mance of the algorithm. A source woadn a given bilingual corpora, which are widely available and
context may have two equally good, interchangeablguite large. Thus, discriminative training is a vi-
translations into the target language. Our evaluatioable option for the word translation problem. An-

Table 1: Aligned translations for “rise” occurring at
least 10 times in the corpus



other important consideration is that in order to ef- Poa(b|a,s) = Leogws

fectively incorporate our system in a machine trans- a,s

lation system, we would like to produce not just a

single prediction, but instead a list of confidencewith partition functionZ, s = >, c;. exp(05¢®S).

rated possibilities. The optimization procedure ofry aining. We train the logistic regression model to

‘ . . : UYnaximize the conditional likelihood of the observed
tion over possubl_e translations which accurately reRabels given the features in our training set. Thus,
resents the confidence of the model for each translgm goal in training the model far is to maximize

tion. In contrast a classical Naive Bayes model of-

ten assigns very low probabilities to all but the most H Poe (s | a,s)
likely translation. Other word-sense disambiguation 0\ Ras 155/
models may not produce confidence measures at all. s€Da

Features. Our word translation model for a word We maximize this objective by maximizing its log-

a in a sentence = wy, ..., wy, is based on features arithm (the log-conditional-likelihood) using conju-

constructed from the word and its context within thegate gradient ascent (Shewchuk, 1994).

sentence. Our basic logistic regression model usesOne important consideration when training using
the following features, which correspond to the feamaximum likelihood is regularization of the param-

ture space for a standard Naive Bayes model:  eters. In the case of logistic regression, the most
e the part of speech of (generated using the common type of regularization i, regularization;
Brill taggery; we then maximize

e abinary “occurs” variable for each word which W o
is 1 if that word is in a fixed context centered Hexp (_ (‘91)73') )
b.j

H Pya(ugs | a,s).

at a (¢, words to the right and; words to the 202 5
S a

left), and O otherwise.

We also consider an extension to this model, wherghis penalizes the likelihood for the distance of each
instead of the fixed context features above, we Useparameteﬁgj from O; it corresponds to a Gaussian

e for each directiond € {i,r} and each possi- prior on each parameter with variancé.
ble context size:y € {1,...,Cy}, an “occurs”

variable for each word. 5 Word Translation Results

This is a true generalization of the previous confor our word translation experiments we used the
text features, since it contains features for all pos=uropean Parliament proceedings corpus, which
sible context sizes, not just one particular fixed sizecontains approximately 27 million words in each of

This feature set is equivalent to having one featurEnglish and French (as well as a number of other
for each word in each context position, except thdanguages). We tested on a set of 1859 ambigu-
it will have a different prior over parameters undetous words — specifically, all ambiguous words con-

standardL, regularization. This feature set allowstained in the first document of the corpus. For each
our model to distinguish between very local (ofterof these words, we found all instances of the word in

syntactic) features and somewhat longer range fethe corpus and split these instances into training and
tures whose exact position is not as important. test sets.

Let 9% be the set of features for word to be We tested four different models. The first, Base-

translated, with sentence contex{the description line, always chooses the most common translation
of the model does not depend on the particular feder the word; the second, Baseline with Part of

ture set selected). Speech, uses tagger-generated parts of speech to
Model. The logistic regression model encodes th&h00seé the most common translation for the ob-
conditional distribution(P(uas = b | a,s) : b served word/part-of-speech pair. The third model,

U,). Such a model is parameterized by a set of vecMPIe Logistic, is the logistic regression model
tors@?, one for each word and each possible targetWlth the simpler feature set, a context window of a
b € U,, where each vector contains aweigm for fixed size. We selected the window size by eval-

a8 . " uating accuracy for a variety of window sizes on
SZ?PJG?;L:&’J' - We can now define our conditional 55 ¢ the 1859 ambiguous words using a random
istribution:

test-train split. The window size which performed
®Available athttp://www.cs.jhu.edu/ brill/ best on average extended one word to the left and



Model Macro | Micro 6 Blank-Filling Task
Baseline 0.5111 0.526 One of the most difficult parts of machine translation

Baseline with Part of Speech0.519 | 0.532| g jecoding — finding the most likely translation ac-
Simple Logistic 0.581 | 0.605 | ¢qrding to some probability model. The difficulty
Logistic 0.596 | 0.620

arises from the enormous number of possible trans-
lated sentences. Existing decoders generally use ei-
ther highly pruned search or greedy heuristic search.
In either case, the quality of a translation can vary
greatly from sentence to sentence. This variation
_ _ is much higher than the improvement in “semantic”
two words to the right (larger windows generally reaccuracy our model is attempting to achieve.

sulted in overfitting). The fourth model, Logistic, is 5,4 currently available decoders do not provide
the logistic regression model with overlapping cony nayral way to incorporate the results of a word

text windows; the maximum window size for th'stranslation system. For example, Carpuat and Wu

model was four words to the left and four words to(2005) obtain neqati ;
; . gative results for two methods of in-
the right. We selected the standard deviawdrfor corporating the output of a word-sense disambigua-

the logistic models by trying di_fferent values on theg;,n, system into a machine translation system.
same small subset of the ambiguous words. For the :
For these reasons, we instead used our word trans-

Simple Logistic model, the best value wai$ = 1; lation model for a simplified translation problem.

for the Logistic model, it was.35. .
ble 2 sh its of th ; gel hWe prepared a dataset as follows: for each occur-
Table 2 shows results of these four models. Thg,ce of an ambiguous words in an English sen-

first column is macro-averaged over the 1859 wordsece in the first document of the Europarl corpus,

that 'Sd' thr? accuracy forr] each Wgrd Icountshequallwe tried to determine what the correct translation for
towards the average. The second column shows the, iy ord was in the corresponding French sentence.

micro-averaged accuracy, where each test exampigye found one and exactly one possible translation

counts equally. We will focus on the micro-averageqo, that word in the French sentence, we replaced

results, since they correspond to overall accuracy. hat word with a “blank”. and linked the English
_The less accurate of our two models, Simple Loword to that blank. The final result was a set:66

gistic, improves around 8% over the simple baselingentences with a total 6618 blanks.

and 7% over the part-of-speech baseline on aver- g, example, the following English-French sen-

age. Our more complex logistic model, which is ablgy .o pair contains the two ambiguous words

to handle larger context sizes without significantlyyecs andissue and one possible translation for each,
overfitting, improves accuracy by another 1.5%.

_ examiner andquestion:
There was a great deal of variance from word

to word in the performance of our models relative ® Therefore, the commission sholdddress the
to baseline. For a few words, we achieved very 1SSueonce and for all. o _

large increases in accuracy. For instance, the noun® Par conséquent, la commission devra egkin
“agenda” showed a 31.2% increase over both base- aminer cettequestion particuliere.

lines.  Similarly, the word “rise” (either a noun w replace the translations of the ambiguous words

or a verb) had part-of-speech baseline accuracy @fiin blanks; we would like a decoder to replace the

27.9%. Our model increased the accuracy to 57.0%,a1ks with the correct translations:

It is worth repeating that accuracies on this task i o :
are artificially low since in many cases a single word ® Par consequent, la commission devra ersh [
can be translated to many different words with the ~ dress] cette ssue] particuliere.

same meaning. At the same time, accuracies are ar-An advantage of this task is that, for a given distri-
tificially inflated by the fact that we only consider bution P(t|s), we can easily write a decoder which
examples where we can find an aligned word iRxhaustively searches the entire solution space for
the French corpus, so translations where a word {fe best answer (provided that there are not too many
dropped or translated as part of a compound worglanks and thaP(t|s) is sufficiently “local” with re-
are not counted. spect tot). Thus, we can be sure that it is the prob-
One disadvantage of the EuroParl corpus is that &bility model, and not the decoder, which is deter-
is not “balanced” in terms of semantic content. It ismining the quality of the output. Also, we have re-
not clear how this affects our results. moved most or all syntactic variability from the task,

Table 2: Average Word Translation Accuracy



Model XNm | Aga | Ada | Awt Acc 2
Language Modelonly| I 0 0 0 0.749
Source-Channel 1 1 0 0 0.821
LM + GA + DA 1 0.6 | 0.6" 0 0.833
LM+ GA + DA+ WT 1 0.6 0* 1.2* | 0.846

Table 3: Blank-filling results. Weights marked with
* have been optimized.

allowing us to better gauge whether we are choosir
semantically correct translations.

Let (a4, b;) be the pairs of words corresponding ta
the blanks in sentenae Then the alignment model
decomposes as a product of terms over these pai
e.g. P(s|t) o [l(g, s, P(ailb;). Analogously, we
extend the word translation model &5, (t|s)

H(“z‘#’i) Pui(bils; ai). _ Figure 1: Accuracy on blank-filling task with;,, = 1 and
The source-channel model can be used directly,, . — 0 as afunction of\ e, andu:.
to solve the blank filling task; the language model

Qakﬁs urs]_(le ofhthel_French Wor(czllslsurroundin% €aG/hn model to choose the word translation model's
ank, while the alignment model guesses the ap;; choice. This allows the word translation model

propriate translation based on the aligned Englisg \york with the language and alignment models to
word. As we have mentioned, this model does ”Sﬁroduce a good translation.

take full advantage of the context in the'English S€™ \We evaluated this combined translation model on
tence. Thus, we hope that incorporating the worgn

translation model into the decoder will improve per-tureebclgglf(f'iz:g?]? s{a?:lgl;ogl}ﬁg?]ua :eg'rr]‘q%sdg‘; ;[,C: S;Ié(d
formance on this task. : guag

the CMU-Cambridge toolki?. The word translation

Conversely, simply using the word translation,oqe| for each ambiguous word was trained on all
model alone for the blank-filling task would not takey,cuments except the first.

advantage of the available French context. There Table 3 shows results for several sets of weights
are four probability distributions we might consider, , . X Of weignts.
denotes entries which have been optimized (see

using: the language modd?,,(t); the “genera- . ) .
Al ; _ below); all other entries are fixed. For example, the
tive” alignment modelFy, (s|t), which we calcu é:ird model was obtained by fixing the coefficient of

Word Translation Coefficient

Generative Coefficient

late using the training samples from the previou e language model and the word-translation model
section; the analogous “discriminative” alignmen guag

model Py,(t]s), which corresponds to the Base- 0 be 1 and 0, respectively, and optimizing over pos-

line system we compared to on the word translatioﬁible weights for the generative and discriminative

task; and our overlapping context logistic modelf"Illgnment models

Py (t|s), which also goes in the “discriminative” di- The Ianguage_ model alone is able to achieve rea-
rection, but uses the context features in the sour@nable results; adding the alignment models im-

language for determining the distribution over eacR"OVes performance further. By adding the word-
word’s possible translations. translation model, we are able to improve perfor-

: . : mance by approximately 2.5% over the source-

”n\é\aﬁ ggmgzgz&zﬁse models by simply taking alogc:hannel model, a relative error reduction of 14%,
' and 1.3% over the optimized model using the

log P(t|s) o< Ay, 10g Pry (t) + Aga log Pya(s|t) language model and generative and discriminative
+ Adq log Py, (t]s) + Ayt log Py (t]s). alignment models, a relative error reduction of 7.8%

The case of\;,;, = A\gq = L andAg, = Ay = O re-
duces to the source-channel model; other settings i
corporate discriminative models to varying degree

We chose optimal coefficients for the combined
robability models by exhaustively trying all possi-
. ) ) le settings of the weights, at a resolution of 0.1,
The most important feature of this combinedeya|yating accuracy for each one on the test set. Fig-

model is that, in contrast to (Carpuat and Wu, 2005)yre 1 shows the performance on the blank-filling
we incorporate the word translation model in a

“soft” way rather than forcing the machine transla- °Available athttp://mi.eng.cam.ac.uk/ prc14/toolkit.html.
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task as a function of the weights of the generativ
alignment model and the word-translation mode oot
(the optimum value of the discriminative alignment |
model P(t|s) is always O when we include the
word-translation model). As we can see, the pel
formance of this model is robust with respect tc °°
the exact value of the coefficients. The “obvious’ 5 oss|
setting of 1.0 for the generative model and 1.0 fo< _|
the word translation model performs nearly as wel
as the optimized setting. In the optimal region
the word-translation model receives twice as muc s
weight as the generative alignment model, indical |
ing that word-translation model is more informative : ‘ ‘ ‘ ‘ ‘
than the generative alignment model. Incorporatine° ? Average number of possible translations ©

the discriminative alignment model into the SOUICEEjq  re 2: Accuracy ofbest-n strategy (dotted lines) aniit-

channel model also improves performance, but nef strategy (solid lines). o = generative alignment, + = diseri
nearly as much as using the word-translation modehative alignment, * = word translation.

An alternate way to optimize weights over transof the candidate translation set. Figure 2 shows the
lation features is described in Och and Ney (2002hccuracy vs. average candidate set size for the word-
They consider a number of translation features, inranslation model, discriminative alignment model,
cluding the language model and generative and diand generative alignment model.

criminative alignment models. The generative alignment model has the worst
: performance of the three. This is not surprising as it
7 Search Space Pruning does not take into account the prior probability of the
As we have mentioned, one of the main difficultiesarget wordP (). More interestingly, we see that the
in translation is that there are an enormous numbeyjord-translation model outperforms the discrimina-
of possible translations to consider. Decoding algaive translation model by a significant amount. For
rithms must therefore use some kind of search-spaggstance, in order to achieve 95% recall (that is, for
pruning in order to be efficient. 95% of the ambiguous words, we retain the correct
A key part of pruning the search space is decidintranslation), we only need candidate sets of aver-
on the set of words to consider in possible translaage sizel.2 for the cut-off strategy using the word-
tions (Germann et al., 2001). One standard methdchnslation model, whereas for the same strategy on
is to only consider target words which have highthe discriminative alignment model we require an
probability according to the discriminative align-average set size 67 words.
ment model. But we have already shown that the As the size of the solution space grows exponen-
word translation model achieves much better perfOﬁally with the size of the candidate sets, the word-
mance on word translation than this baseline modekanslation model could potentially greatly reduce
thus, we WOU!d expect the word translation model tghe search space while maintaining good accuracy.
also be considerably more accurate when used for ¢ woyld be interesting to use similar techniques to
picking sets of candidate translations. learn null fertility (i.e., when a word has no trans-
Given a probability distribution over possible|ation in the target sentencdg.
translations of a wordP(b|a,s), there are several
ways to choose a reduced set of possible transl§- Related Work
tions. Two commonly used methods are to onhBerger et al. (1996) apply maximum entropy meth-
consider the tom scoring words from this distribu- ods (equivalent to logistic regression) to, among
tion (best-n); and to only consider wordssuch that other tasks, the word-translation task. However, no
P(b|a,s) is above some fixed thresholcu-off ). quantitative results are presented. In this paper we
We use the same data set as for the blank-fillingemonstrate that the method can improve perfor-
task. We evaluate the accuracy of a pruning strate%?ance on a large data set and show how it might
by evaluating whether the correct translation is ife used to improve machine translation.
the candidate set selected by the pruning strategy.Diab and Resnik (2002) suggest using large bilin-
To compare results for different pruning strategieggual corpora in order to improve performance on
we plot performance as a function of average sizeord sense disambiguation. The main idea is that

0.85




knowing a French word may help determine the We did not integrate the word translation model
meaning of the corresponding English word. Theynto a full machine-translation system, due to the
apply this intuition to the Senseval word disamdiack of a suitable, publicly-available decoder. Given
biguation task by running off-the-shelf translators tsuch a decoder, the word translation model could
produce translations which they then use for disanbe incorporated directly, or used to rerank candidate
biguation. translations as a post-processing step.

Ng et al. (2003) address word sense disambigua- The word translation model could be improved
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