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Abstract

In word sense disambiguation, a system attempts to
determine the sense of a word from contextual fea-
tures. Major barriers to building a high-performing
word sense disambiguation system include the dif-
ficulty of labeling data for this task and of pre-
dicting fine-grained sense distinctions. These is-
sues stem partly from the fact that the task is be-
ing treated in isolation from possible uses of au-
tomatically disambiguated data. In this paper, we
consider the related task of word translation, where
we wish to determine the correct translation of a
word from context. We can use parallel language
corpora as a large supply of partially labeled data
for this task. We present algorithms for solving the
word translation problem and demonstrate a signif-
icant improvement over a baseline system. We then
show that the word-translation system can be used
to improve performance on a simplified machine-
translation task and can effectively and accurately
prune the set of candidate translations for a word.

1 Introduction
The problem of distinguishing between multiple
possible senses of a word is an important subtask in
many NLP applications. However, despite its con-
ceptual simplicity, and its obvious formulation as a
standard classification problem, achieving high lev-
els of performance on this task has been a remark-
ably elusive goal.

In its standard formulation, the disambiguation
task is specified via an ontology defining the dif-
ferent senses of ambiguous words. In the Sense-
val competition, for example, WordNet (Fellbaum,
1998) is used to define this ontology. However, on-
tologies such as WordNet are not ideally suited to
the task of word-sense disambiguation. In many
cases, WordNet is overly “specific”, defining senses
which are very similar and hard to distinguish. For
example, there are seven definitions of “respect”
as a noun (including closely related senses such as
“an attitude of admiration or esteem” and “a feel-
ing of friendship and esteem”); there are even more
when the verb definitions are included as well. Such

closely related senses pose a challenge both for auto-
matic disambiguation and hand labeling. Moreover,
the use of a very fine-grained set of senses, most of
which are quite rare in practice, makes it very diffi-
cult to obtain sufficient amounts of training data.

These issues are clearly reflected in the perfor-
mance of current word-sense disambiguation sys-
tems. When given a large amount of training data
for a particular word with reasonably clear sense
distinctions, existing systems perform fairly well.
However, for the “all-words” task, where all am-
biguous words from a test corpus must be disam-
biguated, it has so far proved difficult to perform sig-
nificantly better than the baseline heuristic of choos-
ing the most common sense for each word.1

In this paper, we address a different formulation
of the word-sense disambiguation task. Rather than
considering this task on its own, we consider a task
of disambiguating words for the purpose of some
larger goal. Perhaps the most direct and compelling
application of a word-sense disambiguator is to ma-
chine translation. If we knew the correct seman-
tic meaning of each word in the source language,
we could more accurately determine the appropriate
words in the target language. Importantly, for this
application, subtle shades of meaning will often be
irrelevant in choosing the most appropriate words in
the target language, as closely related senses of a
single word in one language are often encoded by a
single word in another. In the context of this larger
goal, we can focus only on sense distinctions that a
human would consider when choosing the transla-
tion of a word in the source language.

We therefore consider the task of word-sense dis-
ambiguation for the purpose of machine translation.
Rather than predicting the sense of a particular word
a, we predict the possible translations ofa into the

1See results of Senseval-3, available at
http://www.senseval.org/senseval3



target language. We both train and evaluate the sys-
tem on this task. This formulation of the word-sense
disambiguation task, which we refer to asword
translation, has multiple advantages. First, a very
large amount of “partially-labeled” data is available
for this task in the form of bilingual corpora (which
exist for a wide range of languages). Second, the
“labeling” of these corpora (that is, translation from
one language to another), is a task at which humans
are quite proficient and which does not generally re-
quire the labeler (translator) to make difficult dis-
tinctions between fine shades of meaning.

In the remainder of this paper, we first discuss
how training data for this task can be acquired au-
tomatically from bilingual corpora. We apply a
standard learning algorithm for word-sense disam-
biguation to the word translation task, with several
modifications which proved useful for this task.We
present the results of our algorithm on word transla-
tion, showing that it significantly improves perfor-
mance on this task. We also consider two meth-
ods for incorporating word translation into machine
translation. First, we can use the output of our model
to help a translation model choose better words;
since general translation is a very noisy process, we
present results on a simplified translation task. Sec-
ond, we show that the output of our model can be
used to prune candidate word sets for translation;
this could be used to significantly speed up current
translation systems.

2 Machine Translation
In machine translation, we wish to translate a sen-
tences in our source language intot in our target
language. The standard approach to statistical ma-
chine translation uses thesource-channel model ,

argmax
t
P (t|s) = argmax

t
P (t)P (s|t),

whereP (t) is thelanguage model for the target lan-
guage, andP (s|t) is analignment model from the
target language to the source language. Together
they define a generative model for the source/target
pair (s, t): first t is generated according to the lan-
guage modelP (t); then s is generated fromt ac-
cording toP (s|t).2

Typically, strong independence assumptions are
then made about the distributionP (s|t). For ex-
ample, in the IBM Models (Brown et al., 1993),
each wordti independently generates 0, 1, or more

2Note that we refer tot as the target sentence, even though in
the source-channel model,t is the source sentence which goes
through the channel modelP (s|t) to produce the observed sen-
tences.

words in the source language. Thus, the words gen-
erated byti are independent of the words generated
by tj for eachj 6= i. This means that correla-
tions between words in the source sentence are not
captured byP (s|t), and so the context we will use
in our word translation models to predictti given
si is not available to a system making these inde-
pendence assumptions. In this type of system, se-
mantic and syntactic relationships between words
are only modeled in the target language; most or
all of the semantic and syntactic information con-
tained in the source sentence is ignored. The lan-
guage modelP (t) does introduce some context-
dependencies, but the standard n-gram model used
in machine translation is too weak to provide a rea-
sonable solution to the strong independence assump-
tions made by the alignment model.

3 Task Formulation
We define the word translation task as finding, for
an individual worda in the source languageS, the
correct translation, either a word or phrase, in the
target languageT . Clearly, there are cases where
a is part of a multi-word phrase that needs to be
translated as a unit. Our approach could be extended
by preprocessing the data inS to find phrases, and
then executing the entire algorithm treating phrases
as atomic units. We do not explore this extension in
this paper, instead focusing on the word-to-phrase
translation problem.

As we discussed, a key advantage of the word
translation vs. word sense disambiguation is the
availability of large amounts of training data. This
data is in the form of bilingual corpora, such as
the European Parliament proceedings3. Such doc-
uments provide many training instances, where a
word in one language is translated into another.
However, the data is only partially labeled in that
we are not given a word-to-word alignment between
the two languages, and thus we do not know what
every word in the source languageS translates to in
the target languageT . While sentence-to-sentence
alignment is a fairly easy task, word-to-word align-
ment is considerably more difficult. To obtain word-
to-word alignments, we used GIZA++4, an imple-
mentation of the IBM Models (specifically, we used
the output of IBM Model 4). We did not perform
stemming on either language, so as to preserve suf-
fix information for our word translation system and
the machine translation language model.

Let DS be the set of sentences in the source lan-

3Available athttp://www.isi.edu/ koehn/
4Available athttp://www.isi.edu/ och/GIZA++.html



French (frequency) Translation
montée(51) going up
lève(10), lever(17) standing up
hausse(58), augmenter(37),increase(number)

augmentation(150)
interviens(53) to rise to speak
naissance(21), source(10) to be created, arise
soulevé(10) raising an issue

Table 1: Aligned translations for “rise” occurring at
least 10 times in the corpus

guage andDT the set of target language sentences.
The alignment algorithm can be run in either di-

rection. When run in theS → T direction, the al-
gorithm aligns each word int to at most one word
in s. Consider some source sentences that contains
the worda, and letUa,s→t = b1, . . . , bk be the set
of words that align toa in the aligned sentencet. In
general, we can considerUa = {Ua,s→t}s∈Da to be
the candidate set of translations fora in T , where
Da is the set of source language sentences contain-
ing a. However, this definition is quite noisy: a word
bi might have been aligned witha arbitrarily; or,bi

might be a word that itself corresponds to a multi-
word translation inS. Thus, we also align the sen-
tences in theT → S direction, and require that each
bi in the phrase aligns either witha or with nothing.
As this process is still fairly noisy, we only consider
a word or phraseb ∈ Ua to be a candidate translation
for a if it occurs some minimum number of times in
the data.

For example, Table 1 shows a possible candidate
set for the English word “rise”, with French as the
target language. Note that this set can contain not
only target words corresponding to different mean-
ings of “rise” (the rows in the table) but also words
which correspond to different grammatical forms in
the target language corresponding to different parts
of speech, verb tenses, etc. So, disambiguation in
this case is both over senses and grammatical forms.

The final result of our processing of the corpus is,
for each source worda, a set of target words/phrases
Ua; and a set of sentencesDa where, in each sen-
tence,a is aligned to someb ∈ Ua. For any sen-
tences ∈ Da, aligned to some target sentencet,
let ua,s ∈ Ua be the word or phrase int aligned
with a. We can now treat this set of sentences as
a fully-labeled corpus, which can be split into a set
used for learning the word-translation model and a
test set used for evaluating its performance.

We note, however, that there is a limitation to us-
ing accuracy on the test set for evaluating the perfor-
mance of the algorithm. A source worda in a given
context may have two equally good, interchangeable
translations into the target language. Our evaluation

metric only rewards the algorithm for selecting the
target word/phrase that happened to be used in the
actual translation. Thus, accuracies measured us-
ing this metric may be artificially low. This is a
common problem with evaluating machine transla-
tion systems.

Another issue is that we take as ground truth the
alignments produced by GIZA++. This has two im-
plications: first, our training data may be noisy since
some alignments may be incorrect; and second, our
test data may not be completely accurate. As men-
tioned above, we only consider possible translations
which occur some minimum number of times; this
removes many of the mistakes made by GIZA++.
Even if the test set is not 100% reliable, though, im-
provement over baseline performance is indicative
of the potential of a method.

4 Word Translation Algorithms
The word translation task and the word-sense dis-
ambiguation task have the same form: each worda
is associated with a set of possible labelsUa; given
a sentences containing worda, we must determine
which of the possible labels inUa to assign toa in
the contexts. The only difference in the two tasks is
the setUa: for word translation it is the set of pos-
sible translations ofa, while for word sense disam-
biguation it is the set of possible senses ofa in some
ontology. Thus, we may use any word sense disam-
biguation algorithm as a word translation algorithm
by appropriately defining the senses (assuming that
the WSD algorithm does not assume that a particular
ontology is used to choose the senses).

Our main focus in this paper is to show that ma-
chine learning techniques are effective for the word
translation task, and to demonstrate that we can use
the output of our word translation system to im-
prove performance on two machine-translation re-
lated tasks. We will therefore restrict our atten-
tion to a relatively simple model, logistic regres-
sion (Minka, 2000). There are several motivations
for using this discriminative, probabilistic model.
First, it is known both theoretically and empirically
(e.g., (Ng and Jordan, 2002)) that discriminative
models achieve higher accuracies than generative
models if enough data is available. For the tradi-
tional word-sense disambiguation task, data must be
hand-labeled, and is therefore often too scarce to al-
low for discriminative training. In our setting, how-
ever, training data is acquired automatically from
bilingual corpora, which are widely available and
quite large. Thus, discriminative training is a vi-
able option for the word translation problem. An-



other important consideration is that in order to ef-
fectively incorporate our system in a machine trans-
lation system, we would like to produce not just a
single prediction, but instead a list of confidence-
rated possibilities. The optimization procedure of
logistic regression attempts to produce a distribu-
tion over possible translations which accurately rep-
resents the confidence of the model for each transla-
tion. In contrast a classical Naive Bayes model of-
ten assigns very low probabilities to all but the most
likely translation. Other word-sense disambiguation
models may not produce confidence measures at all.

Features. Our word translation model for a word
a in a sentences = w1, . . . , wk is based on features
constructed from the word and its context within the
sentence. Our basic logistic regression model uses
the following features, which correspond to the fea-
ture space for a standard Naive Bayes model:

• the part of speech ofa (generated using the
Brill tagger)5;

• a binary “occurs” variable for each word which
is 1 if that word is in a fixed context centered
at a (cr words to the right andcl words to the
left), and 0 otherwise.

We also consider an extension to this model, where
instead of the fixed context features above, we use:

• for each directiond ∈ {l, r} and each possi-
ble context sizecd ∈ {1, ..., Cd}, an “occurs”
variable for each word.

This is a true generalization of the previous con-
text features, since it contains features for all pos-
sible context sizes, not just one particular fixed size.
This feature set is equivalent to having one feature
for each word in each context position, except that
it will have a different prior over parameters under
standardL2 regularization. This feature set allows
our model to distinguish between very local (often
syntactic) features and somewhat longer range fea-
tures whose exact position is not as important.

Let φa,s be the set of features for worda to be
translated, with sentence contexts (the description
of the model does not depend on the particular fea-
ture set selected).

Model. The logistic regression model encodes the
conditional distribution(P (ua,s = b | a, s) : b ∈
Ua). Such a model is parameterized by a set of vec-
torsθ

a
b , one for each worda and each possible target

b ∈ Ua, where each vector contains a weightθa
b,j for

each featureφa,s
j . We can now define our conditional

distribution:
5Available athttp://www.cs.jhu.edu/ brill/

Pθ
a(b | a, s) =

1

Za,s

eθ
a
b φa,s

with partition functionZa,s =
∑

b′∈Ua
exp(θa

b′φ
a,s).

Training. We train the logistic regression model to
maximize the conditional likelihood of the observed
labels given the features in our training set. Thus,
our goal in training the model fora is to maximize

∏

s∈Da

Pθ
a(ua,s | a, s).

We maximize this objective by maximizing its log-
arithm (the log-conditional-likelihood) using conju-
gate gradient ascent (Shewchuk, 1994).

One important consideration when training using
maximum likelihood is regularization of the param-
eters. In the case of logistic regression, the most
common type of regularization isL2 regularization;
we then maximize

∏

b,j

exp

(

−
(θa

b,j)
2

2σ2

)

∏

s∈Da

Pθ
a(ua,s | a, s).

This penalizes the likelihood for the distance of each
parameterθa

b,j from 0; it corresponds to a Gaussian
prior on each parameter with varianceσ2.

5 Word Translation Results
For our word translation experiments we used the
European Parliament proceedings corpus, which
contains approximately 27 million words in each of
English and French (as well as a number of other
languages). We tested on a set of 1859 ambigu-
ous words — specifically, all ambiguous words con-
tained in the first document of the corpus. For each
of these words, we found all instances of the word in
the corpus and split these instances into training and
test sets.

We tested four different models. The first, Base-
line, always chooses the most common translation
for the word; the second, Baseline with Part of
Speech, uses tagger-generated parts of speech to
choose the most common translation for the ob-
served word/part-of-speech pair. The third model,
Simple Logistic, is the logistic regression model
with the simpler feature set, a context window of a
fixed size. We selected the window size by eval-
uating accuracy for a variety of window sizes on
20 of the 1859 ambiguous words using a random
test-train split. The window size which performed
best on average extended one word to the left and



Model Macro Micro
Baseline 0.511 0.526
Baseline with Part of Speech 0.519 0.532
Simple Logistic 0.581 0.605
Logistic 0.596 0.620

Table 2: Average Word Translation Accuracy

two words to the right (larger windows generally re-
sulted in overfitting). The fourth model, Logistic, is
the logistic regression model with overlapping con-
text windows; the maximum window size for this
model was four words to the left and four words to
the right. We selected the standard deviationσ2 for
the logistic models by trying different values on the
same small subset of the ambiguous words. For the
Simple Logistic model, the best value wasσ2 = 1;
for the Logistic model, it was0.35.

Table 2 shows results of these four models. The
first column is macro-averaged over the 1859 words,
that is, the accuracy for each word counts equally
towards the average. The second column shows the
micro-averaged accuracy, where each test example
counts equally. We will focus on the micro-averaged
results, since they correspond to overall accuracy.

The less accurate of our two models, Simple Lo-
gistic, improves around 8% over the simple baseline
and 7% over the part-of-speech baseline on aver-
age. Our more complex logistic model, which is able
to handle larger context sizes without significantly
overfitting, improves accuracy by another 1.5%.

There was a great deal of variance from word
to word in the performance of our models relative
to baseline. For a few words, we achieved very
large increases in accuracy. For instance, the noun
“agenda” showed a 31.2% increase over both base-
lines. Similarly, the word “rise” (either a noun
or a verb) had part-of-speech baseline accuracy of
27.9%. Our model increased the accuracy to 57.0%.

It is worth repeating that accuracies on this task
are artificially low since in many cases a single word
can be translated to many different words with the
same meaning. At the same time, accuracies are ar-
tificially inflated by the fact that we only consider
examples where we can find an aligned word in
the French corpus, so translations where a word is
dropped or translated as part of a compound word
are not counted.

One disadvantage of the EuroParl corpus is that it
is not “balanced” in terms of semantic content. It is
not clear how this affects our results.

6 Blank-Filling Task
One of the most difficult parts of machine translation
is decoding — finding the most likely translation ac-
cording to some probability model. The difficulty
arises from the enormous number of possible trans-
lated sentences. Existing decoders generally use ei-
ther highly pruned search or greedy heuristic search.
In either case, the quality of a translation can vary
greatly from sentence to sentence. This variation
is much higher than the improvement in “semantic”
accuracy our model is attempting to achieve.

Also, currently available decoders do not provide
a natural way to incorporate the results of a word
translation system. For example, Carpuat and Wu
(2005) obtain negative results for two methods of in-
corporating the output of a word-sense disambigua-
tion system into a machine translation system.

For these reasons, we instead used our word trans-
lation model for a simplified translation problem.
We prepared a dataset as follows: for each occur-
rence of an ambiguous words in an English sen-
tence in the first document of the Europarl corpus,
we tried to determine what the correct translation for
that word was in the corresponding French sentence.
If we found one and exactly one possible translation
for that word in the French sentence, we replaced
that word with a “blank”, and linked the English
word to that blank. The final result was a set of655
sentences with a total of3018 blanks.

For example, the following English-French sen-
tence pair contains the two ambiguous wordsad-
dress andissue and one possible translation for each,
examiner andquestion:

• Therefore, the commission shouldaddress the
issue once and for all.

• Par conséquent, la commission devra enfinex-
aminer cettequestion particulière.

We replace the translations of the ambiguous words
with blanks; we would like a decoder to replace the
blanks with the correct translations:

• Par conséquent, la commission devra enfin [ad-
dress] cette [issue] particulière.

An advantage of this task is that, for a given distri-
butionP (t|s), we can easily write a decoder which
exhaustively searches the entire solution space for
the best answer (provided that there are not too many
blanks and thatP (t|s) is sufficiently “local” with re-
spect tot). Thus, we can be sure that it is the prob-
ability model, and not the decoder, which is deter-
mining the quality of the output. Also, we have re-
moved most or all syntactic variability from the task,



Model λlm λga λda λwt Acc
Language Model only 1 0 0 0 0.749
Source-Channel 1 1 0 0 0.821
LM + GA + DA 1 0.6∗ 0.6∗ 0 0.833
LM + GA + DA + WT 1 0.6∗ 0∗ 1.2∗ 0.846

Table 3: Blank-filling results. Weights marked with
* have been optimized.

allowing us to better gauge whether we are choosing
semantically correct translations.

Let (ai, bi) be the pairs of words corresponding to
the blanks in sentencet. Then the alignment model
decomposes as a product of terms over these pairs,
e.g. P (s|t) ∝

∏

(ai,bi) P (ai|bi). Analogously, we
extend the word translation model asPwt(t|s) ∝
∏

(ai,bi) Pwt(bi|s, ai).

The source-channel model can be used directly
to solve the blank filling task; the language model
makes use of the French words surrounding each
blank, while the alignment model guesses the ap-
propriate translation based on the aligned English
word. As we have mentioned, this model does not
take full advantage of the context in the English sen-
tence. Thus, we hope that incorporating the word
translation model into the decoder will improve per-
formance on this task.

Conversely, simply using the word translation
model alone for the blank-filling task would not take
advantage of the available French context. There
are four probability distributions we might consider
using: the language modelPlm(t); the “genera-
tive” alignment modelPga(s|t), which we calcu-
late using the training samples from the previous
section; the analogous “discriminative” alignment
model Pda(t|s), which corresponds to the Base-
line system we compared to on the word translation
task; and our overlapping context logistic model,
Pwt(t|s), which also goes in the “discriminative” di-
rection, but uses the context features in the source
language for determining the distribution over each
word’s possible translations.

We combine these models by simply taking a log-
linear combination:

log P (t|s) ∝ λlm log Plm(t) + λga log Pga(s|t)
+ λda log Pda(t|s) + λwt log Pwt(t|s).

The case ofλlm = λga = 1 andλda = λwt = 0 re-
duces to the source-channel model; other settings in-
corporate discriminative models to varying degrees.

The most important feature of this combined
model is that, in contrast to (Carpuat and Wu, 2005),
we incorporate the word translation model in a
“soft” way rather than forcing the machine transla-
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Figure 1: Accuracy on blank-filling task withλlm = 1 and
λdisc = 0 as a function ofλgen andλwt.

tion model to choose the word translation model’s
first choice. This allows the word translation model
to work with the language and alignment models to
produce a good translation.

We evaluated this combined translation model on
the blank-filling task for various settings of the mix-
ture coefficientsλ. For our language model we used
the CMU-Cambridge toolkit.6 The word translation
model for each ambiguous word was trained on all
documents except the first.

Table 3 shows results for several sets of weights.
A * denotes entries which have been optimized (see
below); all other entries are fixed. For example, the
third model was obtained by fixing the coefficient of
the language model and the word-translation model
to be 1 and 0, respectively, and optimizing over pos-
sible weights for the generative and discriminative
alignment models

The language model alone is able to achieve rea-
sonable results; adding the alignment models im-
proves performance further. By adding the word-
translation model, we are able to improve perfor-
mance by approximately 2.5% over the source-
channel model, a relative error reduction of 14%,
and 1.3% over the optimized model using the
language model and generative and discriminative
alignment models, a relative error reduction of 7.8%
.

We chose optimal coefficients for the combined
probability models by exhaustively trying all possi-
ble settings of the weights, at a resolution of 0.1,
evaluating accuracy for each one on the test set. Fig-
ure 1 shows the performance on the blank-filling

6Available athttp://mi.eng.cam.ac.uk/ prc14/toolkit.html.



task as a function of the weights of the generative
alignment model and the word-translation model
(the optimum value of the discriminative alignment
model P (t|s) is always 0 when we include the
word-translation model). As we can see, the per-
formance of this model is robust with respect to
the exact value of the coefficients. The “obvious”
setting of 1.0 for the generative model and 1.0 for
the word translation model performs nearly as well
as the optimized setting. In the optimal region,
the word-translation model receives twice as much
weight as the generative alignment model, indicat-
ing that word-translation model is more informative
than the generative alignment model. Incorporating
the discriminative alignment model into the source-
channel model also improves performance, but not
nearly as much as using the word-translation model.

An alternate way to optimize weights over trans-
lation features is described in Och and Ney (2002).
They consider a number of translation features, in-
cluding the language model and generative and dis-
criminative alignment models.

7 Search Space Pruning
As we have mentioned, one of the main difficulties
in translation is that there are an enormous number
of possible translations to consider. Decoding algo-
rithms must therefore use some kind of search-space
pruning in order to be efficient.

A key part of pruning the search space is deciding
on the set of words to consider in possible transla-
tions (Germann et al., 2001). One standard method
is to only consider target words which have high
probability according to the discriminative align-
ment model. But we have already shown that the
word translation model achieves much better perfor-
mance on word translation than this baseline model;
thus, we would expect the word translation model to
also be considerably more accurate when used for
picking sets of candidate translations.

Given a probability distribution over possible
translations of a word,P (b|a, s), there are several
ways to choose a reduced set of possible transla-
tions. Two commonly used methods are to only
consider the topn scoring words from this distribu-
tion (best-n); and to only consider wordsb such that
P (b|a, s) is above some fixed threshold (cut-off ).

We use the same data set as for the blank-filling
task. We evaluate the accuracy of a pruning strategy
by evaluating whether the correct translation is in
the candidate set selected by the pruning strategy.
To compare results for different pruning strategies,
we plot performance as a function of average size
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of the candidate translation set. Figure 2 shows the
accuracy vs. average candidate set size for the word-
translation model, discriminative alignment model,
and generative alignment model.

The generative alignment model has the worst
performance of the three. This is not surprising as it
does not take into account the prior probability of the
target wordP (b). More interestingly, we see that the
word-translation model outperforms the discrimina-
tive translation model by a significant amount. For
instance, in order to achieve 95% recall (that is, for
95% of the ambiguous words, we retain the correct
translation), we only need candidate sets of aver-
age size4.2 for thecut-off strategy using the word-
translation model, whereas for the same strategy on
the discriminative alignment model we require an
average set size of6.7 words.

As the size of the solution space grows exponen-
tially with the size of the candidate sets, the word-
translation model could potentially greatly reduce
the search space while maintaining good accuracy.

It would be interesting to use similar techniques to
learn null fertility (i.e., when a worda has no trans-
lation in the target sentencet).

8 Related Work
Berger et al. (1996) apply maximum entropy meth-
ods (equivalent to logistic regression) to, among
other tasks, the word-translation task. However, no
quantitative results are presented. In this paper we
demonstrate that the method can improve perfor-
mance on a large data set and show how it might
be used to improve machine translation.

Diab and Resnik (2002) suggest using large bilin-
gual corpora in order to improve performance on
word sense disambiguation. The main idea is that



knowing a French word may help determine the
meaning of the corresponding English word. They
apply this intuition to the Senseval word disam-
biguation task by running off-the-shelf translators to
produce translations which they then use for disam-
biguation.

Ng et al. (2003) address word sense disambigua-
tion by manually annotating WordNet senses with
their translation in the target language (Chinese),
and then automatically extracting labeled examples
for word sense disambiguation by applying the IBM
Models to a bilingual corpus. They achieve compa-
rable results to training on hand-labeled examples.

Koehn and Knight (2003) focus on the task of
noun-phrase translation. They improve performance
on the noun-phrase translation task, and show that
they can use this to improve full translations. A key
difference is that, in predicting noun-phrase trans-
lations, they do not consider the context of nouns.
They present results which indicate that humans can
accurately translate noun phrases without looking
at the surrounding context. However, as we have
demonstrated in this paper, context can be very use-
ful for a (sub-human-level) machine translator.

A similar argument applies to phrase-based trans-
lation methods (e.g., Koehn et al. (2003)). While
phrase-based systems do take into account context
within phrases, they are not able to use context
across phrase boundaries. This is especially impor-
tant when ambiguous words do not occur as part of
a phrase — verbs in particular often appear alone.

9 Conclusions
In this paper we have addressed the word-translation
problem. By viewing word-sense disambiguation in
the context of a larger task, we were able to obtain
large amounts of training data and directly evaluate
the usefulness of our system for a real-world task.
We have shown that we improved over a baseline
system which is difficult to outperform in the word
sense disambiguation task.

We have also presented results for the novel
blank-filling task which indicate that this increased
accuracy can lead to improved machine translation.
We incorporated the word translation system in a
“soft” way, allowing the word translation and lan-
guage models to work together to produce transla-
tions.

Finally, we have shown that the word transla-
tion model is effective at choosing sets of candidate
translations. This suggests that a word translation
system would be immediately useful to current ma-
chine translations systems.

We did not integrate the word translation model
into a full machine-translation system, due to the
lack of a suitable, publicly-available decoder. Given
such a decoder, the word translation model could
be incorporated directly, or used to rerank candidate
translations as a post-processing step.

The word translation model could be improved
in a variety of ways, drawing upon the large body
of work on word-sense disambiguation. In particu-
lar, there are many other types of context features
which could be used to improve word translation
performance, but which are not available to standard
machine-translation systems. Also, the model could
be extended to handle phrases.
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